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1.1 Introduction

Dear reader, this collection of exercises is dedicated exclusively to special relativity, according
to the level that can be tackled at the scientific high school. The collection is taken from
“Resolved exercises in physics”: I extracted it from that to make it easier to find and use on
the internet. All the considerations made there also apply to these exercises.

I hope that what is reported in this work is if not helpful at least not harmful. To improve
what is written and highlight any errors, do not hesitate to write to me.

I apologize for my bad English.

email: prof.virdis@tiscali.it

1.2 Notations and precision in calculations

Throughout this work the SI has been followed, using the siunitx package in Xetex for its
drafting.

As regards the precision of the calculations reported, it was decided to indicate the inter-
mediate steps with more precision than the usual rules for the propagation of errors would
indicate. The final results are instead reported, preferably in scientific notation, with a number
of significant digits never lower than the precision of the starting data.

1.3 License and Copyright

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense

CC BY-NC-ND.

• You must attribute the work in the manner specified by the author or licensor (but not
in any way that suggests that they endorse you or your use of the work).

• You may not use this work for commercial purposes.

• You may not alter, transform, or build upon this work.

cbnd
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2.1 Time dilation, length contraction

Esercizio 1 Andrea is an astronomer and Marco an astronaut: they have both 40 years.
Marco is recruited to make a journey to the distant star Sirius 8.6 light-years, with a spaceship
capable of going at the speed of 0.95 c. Finds:
1. how long the journey takes for Andrea and how long for Marco;
2. how much is the distance covered for Andrea and how much for Marco;
3. the age of both when the star is reached.

Suppose that both Andrea and Marco are each in an inertial frame of reference. Time
and distance traveled are measured between two events: departure from Earth and arrival on
Sirius.
1. For Andrea, time is measured with a clock placed in front of him. However, the event of

departure and arrival take place in different places: it is not a question of a proper time.
The elapsed time can be derived from the speed definition.

𝑣 = Δ𝑥0
Δ𝑡 (2.1)

where 𝑣 is the speed of the spacecraft, Δ𝑥0 the distance between the Earth and Sirius,
measured while standing still on the Earth, is Δ𝑡 the elapsed time.

Δ𝑡 = Δ𝑥0
𝑣 = 8.6 al

0.95 c = 9.1 years = 2.9 × 108 s (2.2)

If Andrea, on Earth, looks at the clock that Marco, on the spaceship, is carrying with him,
he will see that the elapsed time (in this case proper time because it measures the time
interval between two events that take place in the same place) is:

Δ𝑡0 = Δ𝑡
𝛾 = Δ𝑡√1 − 𝑣2

c2
= 2.9 × 108 s√1 − (0.95 c

c
)
2
= 8.9 × 107 s (2.3)

This is the elapsed time for Marco and it is a proper time because the event of departure
and arrival take place, in his reference system, in the same position.

2. Whoever measures the distance between the Earth and Sirius from the Earth’s reference
system sees both the place of arrival and departure stationary in their own reference sys-
tem: this distance is a proper length. It is worth:

𝑙0 = 8.6 ly = 8.1 × 1016m (2.4)
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2.1 Time dilation, length contraction

Marco on the other hand, in his reference system, is as if he were standing still and saw
both the starting point and the arrival point moving at the speed v= 0.95 c: the distance
measured by him is not a proper length. The distance he traveled can be obtained from
the definition of speed, considering the time Δ𝑡0 measured by him to arrive at destination.

𝑣 = Δ𝑥
Δ𝑡0

(2.5)

𝑙 = Δ𝑥 = 𝑣Δ𝑡 = 0.95 c ⋅ 8.9 × 107 s = 2.5 × 1016m (2.6)

We observe that the relative velocity between Marco’s and Andrea’s reference systems
can only be, in modulus, the same for both. We can derive this distance also considering
the phenomenon of length contraction.

𝑙 = 𝑙0
𝛾 = 𝑙0√1 − 𝑣2

c2
= 8.1 × 1016m√1 − (0.95 c

c
)
2
= 2.5 × 1016m (2.7)

3. Finally, when the spaceship reaches its destination, Andrea’s age will be:

𝑡 = 40 years + Δ𝑡 = 49 years (2.8)

Instead the age of Marco:

𝑡 ′ = 40 years + Δ𝑡0 = 43 years (2.9)

Esercizio 2 A spacecraft is sent from Earth to Jupiter; the spacecraft moves with a constant
speed 𝑣 = 25 km/s. Determine the time difference between what is indicated by a clock on
Earth, after a year of travel, and that placed on the spacecraft.

We have two events: the position of the spacecraft at departure and the one after one year.
The time Δ𝑡0 spent on the spacecraft (still unknown) is a proper time: the two events take
place, for this reference system, in the same position. The time Δ𝑡 spent on Earth is instead a
not proper time.

Therefore, the following relationship exists between the two times:

Δ𝑡 = 𝛾Δ𝑡0 (2.10)

Let’s calculate the factor 𝛾 .

𝛾 = 1
√1 − 𝛽2

= 1

√
1 − ( 25 km/s

2.99 × 105 km/s)
2 = 1.0000000035 (2.11)

However, there is a problem with this result: an ordinary scientific calculator will give only
one as a result, as it cannot handle enough significant figures to show the final figures of the
factor calculated here.
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2.1 Time dilation, length contraction

To solve this problem, and when speeds are much lower than the speed of light, we can
use a series expansion. It can be shown that, if 𝑥 ≪ 1, the following relation holds with good
approximation:

(1 + 𝑥)𝛼 ≃ 1 + 𝛼𝑥 (2.12)

If we apply this relation to the gamma factor we can write:

1
√1 − 𝛽2

= (1 − 𝛽2)−
1
2 ≃ 1 + 1

2𝛽
2 (2.13)

𝛾 ≃ 1 + 1
2 (

25 km/s
2.99 × 105 km/s)

2
= 1 + 0.0000000035 (2.14)

So if a year are 31536000 s, the time lag Δ𝑡𝑥 between the two clocks is:

Δ𝑡𝑥 = Δ𝑡 −Δ𝑡0 = 𝛾Δ𝑡0 −Δ𝑡0 = Δ𝑡0(𝛾 − 1) = 31536000 s ((1+ 0.0000000035)− 1) = 0.11 s (2.15)

5



2.2 The Lorentz transformations

2.2 The Lorentz transformations

Esercizio 3 We have two inertial frames of reference 𝑂 and 𝑂 ′. The coordinate axes and
origins of the two systems are superimposed at the instant 𝑡 = 0 s. The second system moves
relative to the first with speed 𝑣 = 7.3 × 107m/s in the positive direction of the 𝑥 axis.

Find at which point in space-time it is located in the system 𝑂 ′ an event that in system
𝑂 it happens at the instant 𝑡 = 3min at the point 𝑃 ≡ (45 km; 3 km; 2 km).

For the particular mutual orientation of the two reference systems we can use the simplest
form of the Lorentz transformations:

𝑥 ′ = 𝛾(𝑥 − 𝑣𝑡)
𝑦 ′ = 𝑦
𝑧 ′ = 𝑧
𝑡 ′ = 𝛾 (𝑡 − 𝑣𝑥

c2
)

(2.16)

where:
𝛾 = 1

√1 − 𝑣2
c2

(2.17)

These transformations allow us to find the coordinates (𝑡, 𝑥, 𝑦 , 𝑧) of an event in the reference
system 𝑂 knowing the coordinates (𝑡 ′, 𝑥 ′, 𝑦 ′, 𝑧 ′) of the same event in the reference system
𝑂 ′. We replace the data:

𝛾 = 1

√
1 − ( 7.3 × 107m/s

299792458m/s)
2 = 1.031 (2.18)

𝑥 ′ = 1.031 ⋅ (45 × 103m − 7.3 × 107m/s ⋅ 180 s) = −1.35 × 1010m
𝑦 ′ = 3 × 103m
𝑧 ′ = 2 × 103m

𝑡 ′ = 1.031 ⋅ (180 s − 7.3 × 107m/s ⋅ 45 × 103m
(299792458m/s)2 ) = 186 s

(2.19)

So, in the reference system 𝑂 ′, the event happens at the instant 𝑡 ′ = 186 s, at the point of
spatial coordinates 𝑃 ′ ≡ (−1.35 × 1010m; 3 × 103m; 2 × 103m).
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2.2 The Lorentz transformations

Esercizio 4 We have two observers, 𝑂 and 𝑂 ′: the first stays on Earth and the second moves
on a spaceship to a space station that is far away 2 light-years from Earth, proceeding at
speed 𝑣 = 0.50 c. When the spaceship sets off on its journey, the two observers are on Earth
at the same time.
1. Find the points in space-time, for the two observers, where the journey begins.
2. Find the points in space-time, for the two observers, where the journey ends.
3. Find the duration of the journey that each of the two observers measures in their reference

system, indicating which of the two durations can be interpreted as a proper time.
4. Find the length of the journey that each of the two observers measures in its own frame

of reference, indicating which of the two can be interpreted as proper length.

The text tells us that in the initial instant time is the same for the two observers: let us set
it, at our discretion and for simplicity’s sake, equal to zero.

𝑡1 = 𝑡 ′1 = 0 s (2.20)

Suppose the motion takes place in a straight line, at a constant speed. If this hypothesis holds
we can consider the reference system of the Earth and of the spaceship as inertial and we can
apply the Lorentz transformations. If the motion were different, we would almost certainly
have to use a much more sophisticated model, perhaps general relativity.

As regards the spatial orientation, we set the axis 𝑥 in the direction of the trajectory of
motion and with the positive direction it agrees with the direction of the spaceship’s speed.
The Aces 𝑦 and 𝑧 are consequently perpendicular to the motion and for them relativistic
phenomena are not observed: we exclude them from the discussion.

Now we can fix the initial position of the journey in the two reference systems in any
coordinate of the axis 𝑥 : let us set it, at our discretion and for simplicity, equal to zero for
both systems. As for time they are defined up to an arbitrary constant.

𝑥1 = 𝑥′1 = 0m (2.21)

1. Now we can say that the initial position in the two inertial reference systems is:

𝑃1 = 𝑃 ′1 ≡ (0m; 0 s) (2.22)

2. As far as constructed and known so far, between our reference systems we can apply the
following Lorentz transformations:

𝑥 ′ = 𝛾(𝑥 − 𝑣𝑡)
𝑡 ′ = 𝛾 (𝑡 − 𝑣𝑥

c2
) (2.23)

As for the reference system 𝑂, the arrival point is two light years from the starting point,
therefore:

𝑥2 = 2 ly = 1.8908 × 1016m (2.24)

The elapsed time can be derived from the speed definition.

𝑣 = Δ𝑥0
Δ𝑡 (2.25)
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2.2 The Lorentz transformations

where 𝑣 is the speed of the spacecraft, Δ𝑥0 the distance between the Earth and the space
station, measured while standing still on the Earth, and Δ𝑡 the elapsed time.

𝑡2 = 𝑡2 − 𝑡1 = Δ𝑡 = Δ𝑥0
𝑣 = 2 ly

0.5 c = 4.0 years = 1.2614 × 108 s (2.26)

So:
𝑃2 ≡ (𝑥2; 𝑡2) = (2 ly; 4 y) = (1.8908 × 1016m; 1.2614 × 108 s) (2.27)

For the reference system 𝑂 ′ we substitute what we know into the transformations:

𝛾 = 1

√1 − 𝑣2
c2

= 1

√1 − (0.5 c
c

)
2 = 1.1547 (2.28)

𝑥 ′2 = 1.1547 ⋅ (2 ly − 0.5 c ⋅ 4 y) = 0 ly = 0m
𝑡 ′2 = 1.1547 ⋅ (4 y − 0.5 c ⋅ 2 ly

c2
) = 3.45 a = 1.0925 × 108 s (2.29)

The arrival point in the reference system 𝑂 ′ is:

𝑃 ′2 ≡ (𝑥 ′2; 𝑡 ′2) = (0m; 1.0925 × 108 s) (2.30)

3. For the reference system 𝑂 ′, as we have already calculated, the journey lasts:

Δ𝑡 = 𝑡2 − 𝑡1 = 𝑡2 = 1.2614 × 108 s (2.31)

For the reference system 𝑂 ′ the journey lasts:

Δ𝑡 ′ = 𝑡 ′2 − 𝑡 ′1 = 𝑡 ′2 = 1.0925 × 108 s (2.32)

The travel time for the reference system 𝑂 ′ it’s a proper time. The relationship between
the two durations must also exist:

Δ𝑡 ′ = Δ𝑡0 = Δ𝑡
𝛾 (2.33)

Indeed:
Δ𝑡
𝛾 = 1.2614 × 108 s

1.1547 = 1.0925 × 108 s = Δ𝑡 ′ (2.34)

4. For the reference system 𝑂 the length of the trip 𝐿, as we know from the text, it is 2 ly. The
arrival and departure positions can be measured at the same instant by the same reference
system: we have a proper length.
For the reference system 𝑂 ′ the length 𝐿′ it is not Δ𝑥 ′ = 𝑥 ′2 − 𝑥 ′1. In fact, besides being
nothing, that length is between two events that for 𝑂 ′ they don’t happen at the same time.
Then the length is, for example, the distance between the starting point and the finish line
both seen at the time of departure.
If the motion is uniform in a straight line, the finish line is at a distance which is the
product of the speed of the journey by the time it lasts.

𝐿′ = 𝑣 ⋅ 𝑡 ′2 = 0.5 c ⋅ 1.0925 × 108 s = 1.64 × 1016m (2.35)
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2.2 The Lorentz transformations

Warnings
In a previous version of this file, when calculating the position 𝑥 ′2 have not played exact

calculations, as written above, but numerical calculations, moreover with more significant
figures than it would be appropriate to write.

𝑥2′ = 1.1547 ⋅ (1.8908 × 1016m − 1.4989 × 108m/s ⋅ 1.2614 × 108 s) = 1.0108 × 1012m (2.36)

What is wrong with a result so different from the correct one? The problem is that the result
is not formally incorrect. With five significant figures we can expect the result to be an ap-
proximation of 0, 01% and indeed it is. The ratio of the obtained distance to the length 𝐿 it
is of 0, 005%, that is, it is a zero within the precision limits of the calculations. This result is
also very sensitive to the number of digits used to perform the calculation: with some calcu-
lators, preserving all the mathematical precision in the previous calculations, I got as a result
2.7 × 104m. However we don’t see any particular meaning in those numbers, but we find all
the physics that we have to expect only in the null result. Therefore I invite you in relativity
to pay even more attention than usual in carrying out approximate calculations instead of
exact ones, if these are possible, and to the number of digits used also in intermediate steps.
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2.3 The composition of velocities

2.3 The composition of velocities

Esercizio 5 The spaceship Arcadia moves away with speed 𝑣1 = 0.60 c compared to the
Earth. Then launch a missile with a speed 𝑣2 = 0.90 c with respect to it, in front of it.

Find the speed of the rocket relative to Earth.

In the absence of specific indications, let us suppose that the movement of the missile and
of the spaceship all take place on the same straight line. At our discretion and as a purely
formal choice, let’s assume that the movement takes place on the axis 𝑥 : another choice could
in this case change the calculations, but not the physics. If these conditions are valid, we call
𝐹𝑅 the frame of reference of the Earth and we call 𝐹𝑅′ the ship’s frame of reference. The
spaceship and its frame of reference have the same speed and move in the positive direction
of the axis 𝑥 . The two frame of reference have parallel axes. We can represent this with this
figure:

𝑥

𝑦

𝐹𝑅 𝑥 ′

𝑦 ′

𝐹𝑅′
𝑣1 •

𝑣2

The classical composition of the velocities provides that in this case the relative velocities
add up directly. Not so in relativity. If we call 𝑣1 the speed of the second frame of reference
with respect to the first (the speed of the spaceship) e 𝑣2 the speed of an object with respect
to this last reference (the speed of the missile) then this object has a speed 𝑣𝐸 with respect to
the first frame of reference (the Earth), according to this relationship:

𝑣𝐸 = 𝑣1 + 𝑣2
1 + 𝑣1 ⋅ 𝑣2

c2
= 0.6 c + 0.8 c

1 + 0.6 c ⋅ 0.8 c
c2

= 0.95 c (2.37)

We observe that in the previous relation the speeds are taken with a positive sign if you agree
with the positive direction of the axis (as in this case) or with a negative sign otherwise.

Esercizio 6 The Arcadia spaceship and the Orion move away in opposite directions from
the Beta space base. The space station reports the first spacecraft moving away at speed
𝑣1 = 0.60 c and the second with speed 𝑣2 = 0.40 c.

How fast is Orion moving away from Arcadia?

The text tells us that the motion of spaceships occurs in the same direction: we represent
the motion all on the axis 𝑥 . The speed of the Arcadia is indicated with the minus in front
because it is in the opposite direction to the positive direction of the axis 𝑥 .

𝑥
•𝐴

−𝑣1
•
𝐸

𝑣2•𝑂

10
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2.3 The composition of velocities

From the point of view of Arcadia, the Earth is moving away from it with speed 𝑣1 (the
reciprocal velocities of two objects are always the same), but in opposite directions. The Orion
departs Arcadia with unknown speed 𝑣1.

𝑥
•𝐸
𝑣1

•
𝐴

𝑣𝑥•𝑂

This representation fully corresponds to the one described in the previous exercise, where
the frame reference 𝐹𝑅 is that of Arcadia and 𝐹𝑅′ it is that of the earth.

𝑥

𝑦

𝐴 𝑥 ′

𝑦 ′

𝐸
𝑣1 •

𝑣2

Concluding:

𝑣𝑥 = 𝑣1 + 𝑣2
1 + 𝑣1 ⋅ 𝑣2

c2
= 0.6 c + 0.9 c

1 + 0.6 c ⋅ 0.9 c
c2

= 0.97 c (2.38)

Esercizio 7 The spaceship Cavour, if seen from the Earth, travels 18 × 107 km in 8.2 × 102 s
moving away from it. The spaceship Garibaldi is traveling towards the Earth at speed 𝑣𝐺 =
0.60 c in the same direction.
1. Find the speed of Cavour as seen from Earth.
2. Find the speed of the Cavour as seen from the Garibaldi.
3. Find the distance traveled and the time taken by the Cavour when viewed from the

Garibaldi.

We call 𝐹𝑅𝐸 the reference frame of the Earth, 𝐹𝑅𝐶 that of Cavour e 𝐹𝑅𝐺 that of Garibaldi.
The motion all happens in one dimension. We represent what is illustrated by the text by
imagining Cavour moving in the positive direction of the axis 𝑥 and the Garibaldi in the
negative direction when viewed from 𝐹𝑅𝐸 .

𝑥
•𝐺

−𝑣𝐺
•𝐹𝑅𝐸

𝑣𝐶•𝐶

1. The speed of the Cavour seen from the Earth is simply the ratio between the distance
covered and the time taken: both this distance and this time are both measured by the
Earth’s reference system.

𝑣𝐶 = 𝑥
𝑡 = Δ𝑥0

Δ𝑡 = 18 × 1010m
8.2 × 102 s = 2.20 × 108m/s = 0.732 c (2.39)

The distance seen from the Earth can be considered a proper length: we can put a fixed
ruler that goes from the starting position of the Cavour to the arrival point. Elapsed time
is not proper time: it refers to two events that do not take place in the same place.

11



2.3 The composition of velocities

2. From the text we can see that Cavour and Garibaldi move towards each other in the same
direction. Their relative velocity is related to the sum of their velocities relative to the
Earth. We represent what you see from 𝐹𝑅𝐺 .

𝑥
•𝑇
𝑣𝐺

•𝐹𝑅𝐺

𝑣𝐶•𝐶

So the speed 𝑣𝐶𝐺 of the Cavour seen from Garibaldi is:

𝑣𝐶𝐺 = 𝑣𝐶 + 𝑣𝐺
1 + 𝑣𝐶 ⋅ 𝑣𝐺

c2
= 0.732 c + 0.6 c

1 + 0.732 c ⋅ 0.6 c
c2

= 0.926 c (2.40)

3. To answer the third question we use two distinct methods.

First method
We cannot directly apply the formulas relating to length contraction and time dilation
because these can only be applied if in one of the two frame the measured length or time
interval is proper.
In particular, the time measured by the Earth and that measured by Garibaldi are not
both: we cannot establish a direct relationship between the two time intervals. The time
measured on the Cavour is instead a proper time. We write a relationship between the
time measured on Earth and that measured on Cavour obtaining the latter.

𝛾1 = 1

√1 − (𝑣𝐶
c
)
2 = 1

√1 − (0.732 c
c

)
2 = 1.47 (2.41)

Δ𝑡𝐸 = 𝛾1Δ𝑡0 𝐶
Δ𝑡0 𝐶 = Δ𝑡𝐸

𝛾1
= 8.2 × 102 s

1.47 = 5.58 × 102 s (2.42)

The time interval measured on the Garibaldi, which is not proper time, can in turn be
related to the time measured on the Cavour, using their relative velocity that we have
previously derived.

𝛾2 = 1

√1 − (𝑣𝐶𝐺
c

)
2 = 1

√1 − (0.926 c
c

)
2 = 2.65 (2.43)

Δ𝑡𝐺 = 𝛾2Δ𝑡0 𝐶 = 2.65 ⋅ 5.58 × 102 s = 1.48 × 103 s (2.44)

To derive the length measured by the Garibaldi we can apply the definition of speed.

𝑣𝐶𝐺 = Δ𝑥𝐺
Δ𝑡𝐺

Δ𝑥𝐺 = 𝑣𝐶𝐺 ⋅ Δ𝑡𝐺 = 0.926 c ⋅ 1.48 × 103 s = 4.11 × 1011m
(2.45)

We observe that to derive this length textitwe could not have used the usual formulas
related to the contraction of lengths. In fact, in our case the length measured by the Earth
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2.3 The composition of velocities

can be considered a proper length as the starting and arrival position can be measured at
the same time: we can therefore find the contracted length measured by Cavour. Once we
know this, however, we can not make any transformation of the same type to know what
distance the Garibaldi measures. We cannot even make a direct transformation between
the distance measured by the Earth and that measured by Garibaldi.
Secondo metodo
We can obtain the same results more directly by using Lorentz transformations. In order
to use them, we assume at our discretion, without modifying the physics of the problem,
that the three reference frames have the origin of the coincident axes at the instant 𝑡 = 0 s,
where 𝑡 is specific for each frame. In particular, we define the superscript coordinates
measured in the 𝐹𝑅𝐸 and the superscript coordinates those measured in the 𝐹𝑅𝐺 .
The initial position is therefore, for all, at the coordinate 𝑥1 = 𝑥′1 = 0m at time 𝑡1 = 𝑡′1 = 0 s.
The distance measured by 𝐹𝑅𝐸 is:

Δ𝑥 = 𝑥2 − 𝑥1 = 18 × 1010m − 0m = 18 × 1010m (2.46)

Considering that:

𝛾 = 1

√1 − (𝑣𝐺
c
)
2 = 1

√1 − (0.6 c
c

)
2 = 1.25 (2.47)

Then the final position measured from 𝐹𝑅𝐺 is:

𝑥′2 = 𝛾(𝑥2 − 𝑣𝐺 𝑡2) = 1.25 ⋅ (18 × 1010m − (−0.6 c) ⋅ 8.2 × 102 s) = 4.09 × 1011m (2.48)

The velocity of Garibaldi is negative because from Earth it moves to the left in the negative
direction of the axis 𝑥 . The value is different from that calculated with the first method
due to the greater rounding performed in the previous steps.
The distance measured from 𝐹𝑅𝐺 is:

Δ𝑥𝐺 = Δ𝑥 ′ = 𝑥′2 − 𝑥′1 = 4.09 × 1011m − 0m = 4.09 × 1011m (2.49)

Similarly the elapsed time measured by 𝐹𝑅𝑇 is:

Δ𝑡 = 𝑡2 − 𝑡1 = 8.2 × 102 s − 0 s = 8.2 × 102 s (2.50)

The final instant measured from 𝐹𝑅𝐺 is:

𝑡′2 = 𝛾 (𝑡2 −
𝑣𝐺 ⋅ 𝑥2
c2

) = 1.25 ⋅ (8.2 × 102 s − (−0.6 c) ⋅ 18 × 1010m
c2

) = 1.48 × 103 s (2.51)

The time interval measured by 𝐹𝑅𝐺 is:

Δ𝑡𝐺 = Δ𝑡 ′ = 𝑡′2 − 𝑡′1 = 1.48 × 103 s − 0 s = 1.48 × 103 s (2.52)
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2.4 Momentum

2.4 Momentum

Esercizio 8 Two particles, mass 𝑚1 = 2.37 × 10−30 kg and 𝑚2 = 8.26 × 10−31 kg, move
towards each other, towards the same observer, in the same direction, respectively with speed
𝑣1 = 0.80 c and 𝑣2 = 0.60 c. The particles collide in a completely inelastic way.

Find the final velocity of the two particles after the collision.

Also in relativity the total momentum of a system is conserved if the system is not sub-
jected to external forces. If we consider that the two bodies remain united with the same
speed after the collision we can write:

𝑝1 + 𝑝2 = 𝑝𝑓 (2.53)

We calculate the initial momenta of the two particles.

𝑝1 = 𝛾𝑚1𝑣1 = 1

√1 − 𝑣2
c2

𝑚𝑣 = 1
√1 − (0.8)2

⋅ 2.37 × 10−30 kg ⋅ 0.8 c = 9.47 × 10−22 kgm s−1 (2.54)

𝑝2 = 𝛾𝑚2𝑣2 = 1

√1 − 𝑣2
c2

𝑚𝑣 = 1
√1 − (0.6)2

⋅ 8.26 × 10−31 kg ⋅ 0.6 c = 1.86 × 10−22 kgm s−1 (2.55)

We observe that the particles move in opposite directions: one of the momenta (at our discre-
tion) has a negative sign.

𝑝𝑓 = 𝛾𝑚𝑡𝑜𝑡𝑣𝑓 = 𝑝1 + (−𝑝2) = 7.62 × 10−22 kgm s−1 (2.56)

𝑚𝑡𝑜𝑡 = 2.37 × 10−30 kg + 8.26 × 10−31 kg = 3.20 × 10−30 kg (2.57)

We obtain 𝑣𝑓 from this equation, where it is the only unknown.

𝑝𝑓
𝑚𝑡𝑜𝑡

= 𝛾𝑣𝑓 = 𝑣𝑓

√1 −
𝑣2𝑓
c2

𝑝2𝑓
𝑚2𝑡𝑜𝑡

=
𝑣2𝑓

1 −
𝑣2𝑓
c2

=
𝑣2𝑓

c2 − 𝑣2𝑓
c2

=
𝑣2𝑓 c2

c2 − 𝑣2𝑓

(2.58)

𝑝2𝑓
𝑚2𝑡𝑜𝑡

−
𝑣2𝑓 c2

c2 − 𝑣2𝑓
= 0

𝑝2𝑓 (c2 − 𝑣2𝑓 ) − 𝑣2𝑓 c2𝑚2𝑡𝑜𝑡
(c2 − 𝑣2𝑓 )𝑚2𝑡𝑜𝑡

= 0

𝑝2𝑓 c2 − 𝑝2𝑓 𝑣2𝑓 − 𝑚2𝑡𝑜𝑡𝑣2𝑓 c2 = 0
𝑝2𝑓 c2 = 𝑣2𝑓 (𝑝2𝑓 + 𝑚2𝑡𝑜𝑡c2)

𝑣𝑓 =
√

𝑝2𝑓 c2
𝑝2𝑓 + 𝑚2𝑡𝑜𝑡c2

(2.59)
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Finally:

𝑣𝑓 =
√

(7.62 × 10−22 kgm s−1)2 ⋅ 𝑣2
(7.62 × 10−22 kgm s−1)2 + c2 ⋅ (3.20 × 10−30 kg)2 = 1.86 × 108m/s = 0.62 c (2.60)

2.5 Energy

Esercizio 9 Find the rest energy, kinetic energy, and total energy of a muon moving at speed
𝑣 = 0.70 c. [mass muon 𝑚𝜇 = 105.7MeV/c2]

In nuclear and particle physics it is very common to use these alternative units of measure
for energy, momentum and mass. In particular, the mass is often indicated in MeV/c2 where
1 eV = 1.602 × 10−19 J.

The rest energy 𝐸0 of a mass in relativity it is:

𝐸0 = 𝑚c2 (2.61)

whereby:

𝑚 = 𝐸0
c2

(2.62)

which has the same form as the unit used here for the mass of the muon. In our case:

𝐸0 = (105.7MeV/c2) ⋅ c2 = 105.7MeV = 105.7 × 106 ⋅ 1.602 × 10−19 J = 1.693 × 10−11 J (2.63)

The kinetic energy 𝐸𝑐 is defined as:

𝐸𝑐 = (𝛾 − 1)𝑚c2 =
⎛
⎜⎜⎜
⎝

1

√1 − 𝑣2
c2

− 1
⎞
⎟⎟⎟
⎠

𝐸0 = ( 1
√1 − (0.7)2

− 1) ⋅ 1.693 × 10−11 J = 6.778 × 10−12 J

(2.64)
The total energy is the sum of the rest energy and the kinetic energy:

𝐸𝑡𝑜𝑡 = 𝐸0 + 𝐸𝑐 = 𝛾𝑚c2 = 2.371 × 10−11 J (2.65)
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2.5 Energy

Esercizio 10 A particle of mass 𝑚 = 205MeV/c2 is sent to a particle detector.
The detector tells us that the momentum of the particle is 𝑝 = 365MeV/c.
Determine the total energy and velocity of the particle, in the given units and in the SI.

The relativistic relationship between total energy, mass, and momentum is this:

𝐸2 = 𝑚2c4 + 𝑝2c2 (2.66)

In this case:

𝐸 =
√
(205 MeV

c2 )
2
c4 + (365 MeV

c )
2
c2 =

√(205MeV)2 + (365MeV)2 = 419MeV = 6.71 × 10−11 J
(2.67)

From the relation:
𝑝 = 𝑚𝑣𝛾 (2.68)

we proceed as in exercise 8 and write directly:

𝑣𝑓 =
√

𝑝2𝑓 c2
𝑝2𝑓 + 𝑚2𝑡𝑜𝑡c2

(2.69)

𝑣𝑓 =

√√√√√√√√
√

(365 MeV
c )2 c2

(365 MeV
c )2 + (205 MeV

c2 )2 c2
=
√

(365MeV)2

(365 MeV
c )2 + (205 MeV

c )2
= 0.87 c = 2.61 × 108m/s

(2.70)
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